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The effective thickness of the adsorbed polymer layer in a linear shear field was investigated 
theoretically. It is found that, when the shear strength is weaker than a certain critical value, distribution 
of segments perpendicular to the field is unaltered from that at equilibrium, but when the shear strength 
goes over the critical value, the distribution changes abruptly according to the nature of the 
adsorption. 
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INTRODUCTION 

Polymer adsorption is related to many practical and 
academic problems. One fundamental interest is con- 
cerned with the conformational properties of the flexible 
chains adsorbed onto a flat surface, and many theoretical 
and experimental investigations have been made in this 
respect. Although many theoretical papers have in- 
vestigated the equilibrium case, the experimental infor- 
mation can only be obtained by indirect measurements 
for elipsometry, hydrodynamical and spectroscopic treat- 
ments etc. In particular, hydrodynamical studies are 
always related to the non-equilibrium conformational 
behaviour of adsorbed polymers, in spite of the great 
importance of the investigation of polymer adsorption. 

DiMarzio and Rubin I have solved the problem of a 
chain of beads which is attached to a surface via a 
Hookean spring and suffers a linear shear field of a viscous 
fluid with no hydrodynamic interaction. Fortunately, 
they found that the distribution of the beads along the 
direction normal to the surface is not influenced by the 
linear shear field. This situation will not be altered as long 
as the chain deforms linearly due to extemal forces even 
when the effect of the excluded volume of the chain is 
taken into account. In fact, it is well known that the 
deformation is linear when the external force is weak. 
Thus, in a weak linear shear flow, where the hydro- 
dynamic interactions are also small and negligible, the 
arguments of the conformational properties based on the 
equilibrium distribution (in the normal direction to the 
surface) can be applied to the non-equilibrium system. 

On the contrary, when the shear flow becomes much 
stronger, the situation must be altered drastically as 
shown by a recent experimental study by Gramain and 
Myard 2. They show that the hydrodynamic thickness of 
the adsorbed polymers increases abruptly when the 
average velocity of the solvent exceeds a certain value. 

Here, we will attempt to explain the sudden increase of 
the effective hydrodynamic thickness of the adsorbed 
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polymers due to the strong shear flow by considering the 
conformational properties in the velocity field of the 
solvent. 

PHENOMENOLOGY 

de Gennes a, and Varaqui and Dejardin 4 "have investi- 
gated, for the capillary flows, the problem of the effective 
hydrodynamic thickness where the concentration of the 
adsorbed polymer segments decreases exponentially with 
increasing distance from the surface. Here, we will re- 
consider this problem for the case of a linear shear flow 
along a flat surface. 

The velocity, b', of the incompressible solvent in the 
solution containing frictional polymer molecules can be 
determined by Debye-Bueche's theory from the following 
equation 

- ~/V2~ ' + V p  + n ~ '  = 0  (1) 

where n(F), ~/and p are the segment density, viscosity of 
the solvent and the pressure respectively, and ( denotes 
the coefficient of friction between a segment and the 
solvent. We have neglected the fluctuational motions of 
the segments. We will set the x-axis in the direction of the 
solvent flow, and take the y-axis as normal to the surface. 
Thus the flow field ~'(F) is given by 

= (v(y), o, o) (2) 

We will assume that the solvent flow far from the surface is 
a simple Couette flow given by v(y)=ey+constant ,  e 
being the external shear rate, and that the pressure is 
gradient free; ~p = 0. 

In order to see the relation between the effective 
hydrodynamic thickness and the distribution of the 
polymer segments adsorbed on the flat surface, we will 
assume a simple distribution: 



n(r-) = n(y)  = ~ c o n s t a n t  = v for  y < Yo 
( o  for Y> Yo 

Then, equation (1) is reduced to 

d2v< 1 ~1~2y2 =v~v< for Y<Yo 

dZv> =0 for Y>Yo 
~/dy~ 

These equations can be easily solved upon the boundary 
conditions 

v<(yo)=V>(yo) 

v<(O)=O (5) 

dr< dv> 

dy yo-'~--~-y yo =e 

The third condition is assumed in order to express the 
continuous mean distribution of flexible polymer 
segments swaying in the flow penetrating them. Thus, we 
have 

e e ~'y - -  e -  xy 
v<(y)= for Y<Yo 

x e ~y° + e- ~yo 

v>(y)=e(y-yo)+ e tanh  XYo for Y> Yo (6b) 
K 

where x - t = v / ~ / v (  is a length which can be used as a 
measure of the 'penetration' rate of the flow. Now, we 
define the effective thickness 2 as 

v>(~)=o 

Then, this 2 is given by 

1 
2 = Yo- - tanh xyo 

K 

When the adsorbed polymers are dilute, we can take 
xY0 ~ 1 and equation (7) tends to 

2~(xZy~)yo 

It should be noted that this effective thickness 2 is not 
sensitive to the segments near the surface y,~ 2 because the 
absolute value of the solvent velocity is very small there. 
Important factors affecting 2 are the effective width Yo of 
the normal distribution of the adsorbed polymers and the 
effective density v of the active segments. 

Hereafter, we will assume that the adsorbed polymers 
are dilute (ry o ~ 1) but that the thickness 2 is sufficiently 
larger than that of the monolayer. 

CONFORMATIONAL BEHAVIOUR 

In this section, we will concentrate on the problem of the 
conformational distribution of the adsorbed polymers 
under the influence of a linear shear field due to solvent 
flow. For this we use some assumptions which are 
inconsistent with the situation discussed in the previous 
section. For example, we will assume in this section a 
linear shear field of the form: 

Adsorbed polymer thickness in a shear field: A. Hatano 

F(V) = (re(y), O, O)= (ey, 0, 0) (9) 
(3) 

instead of equations (6a) and (6b). It may, however, be 
expected that their effects on our results will be negligibly 
small provided the adsorbed polymers are dilute. 

When the applied shear field is weak, the distortion of 
the adsorbed polymers is small and should be pro- 

(4) portional to the shear force F. DiMarzio and Rubin have 
solved this problem by the beads and spring model 1. It is 
well known, however, that when the shear field becomes 
stronger, the polymers distort non-linearly and their 
theory therefore becomes inapplicable. 

For a dilute solution of flexible polymers under ultra- 
high velocity gradients, de Gennes has investigated its 
coil-stretch transition 5. This behaviour must be the same 
as that the adsorbed system except that the distribution of 
polymers is limited to the region y > 0 and, in our problem 
the external forces are balanced with the adsorption 
forces. 

As to the elastic properties, Webman, Lebowitz and 
Kalos have recently made a computer simulation on a 
model polymer chain having excluded-volume inter- 
actions 6. According to their results the stretching of an 
isolated polymer chain is linear in the case of weak and 
moderate external forces. But, after passing a rather 

(6a) narrow cross-over region Oono, Ohta and Freed give a 
broad cross-over region by theoretical argumentT), it 
becomes non-linear in the sense that the reponse is 
proportional to the 2/3 power of the applied force. 

In the present calculation, however, we will adopt the 
following phenomenological form of the restoring force to 
a polymer chainS: 

= - kE(r)F, k = 3kBT/R 2 (10) 

where F stands for the position measured from a certain 
central point of the adsorption on the surface, k corre- 
sponds to the spring constant in the'dumbell' model (Ro is 
a certain equilibrium distance of the chain without 
external forces), and E(r) is a reponse factor. The function 

(7) E(r) is unity at small r but tends to increase for r > rc and 
diverges for r---~Na (N is the number of segments of the 
chain and a is the length of the unit link) as shown in 
Fi#ure 1. 

Now, we will define the distribution function ~e(r-) of the 
polymer segments in a stationary state under the shear 

(8) field iY(r-) of equation (9). Here, the inferior letter e denotes 
the external shear rate, and sometimes we replace e with 0 
for the quantity free from the external forces. We will put 
no restriction on the form of this ce(V) such as n(y) in the 
previous section. It is subjected only to the following 
boundary conditions; 

*e(oo) =0, *o(r31,= o SO (1) 

The associated current f~e(r-) can be given as 

1 
~(1)e(V)=(1)eff+De{(I)e~ F-V(1)e} (12) 

where D e is the diffusion coefficient given by the theory of 
Brownian motion and depends on ~'. The behaviour of De 
has been discussed phenomenologically by de Gennes 5. 

Conservation of the probability and the stationary 
condition are imposed on this current 

~.~O,(r-) = 0 
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Figure 1 Schematic diagram of E(r) vs. log r, E(r) is unity for 
r<r~, but tends to increase abruptly for r>re 

that is, 

~" (~e~')+V" (De{Oe kB- ~ F - ~ O e ) ) = 0  (14) 

Substituting into relations (9) and (10), we have 

~'(Oeey~x)-~'(De{Oe ~o E(r)F + ~Oe})=O (15) 

where ~ =(1, 0, 0). Using equation (15), we can derive the 
moments 

(x'yJzk)e = dx dy dzx'y/z~dV) (16) 

- 8  0 -oo 

where i,j and k stand for 0 or arbitrary positive integers. 
We are especially interested in the moments preceding 

the second order and in deriving them, we will prepare 
some general relations obtained by partial integrations 
under the boundary conditions of equation (11) as follows 

oo co  

ffdxdzf dy e-<y>e-Xe 
--at)  0 

~° f ; f d z r } e ( r ) = o  f f  020e dxdz dyy--~y2=- dx = - ~ %  (17) 

-oo 0 -oo 
oo 

d d  lY = 0 
- - t O  

If we want to determine the conformational distribution 
concretely and to consider the hydrodynamical inter- 
action explicitly, we need to give both the diffusion 
coefficient D and the function E as functions of ~', i.e., D(F) 
and Eft'). Multiplying equation (15) by xiyJz k where 
i+j+k <2, and integrating the overall allowed volume, 
we obtain 

( D(F ) )e + e(xy )e + <x ~D(F ) \ ,~x /e -(x'D(r)E(r))e=° 

-e<y2)e+(yOD(F)\ +(x ODff')\ +2(xyD(F)E(F)>e 

- (D ( r )x>e .~  = 0  (18a) 

-(  D(~') )e- < Y ~ >e+ ( y2Dff')Eff') )e=O 

- (D(V))e- (z ~D(F)\ ~Z / e  "4"(z2D(r)E(r)>e=O 

• " etc. 

where 
at) 

° 
(18b) 

In our qualitative arguments, however, we will treat D and 
E as constants which are determined only by e, and will 
d~note them by De as previously defined and Ee, 
respectively. Then equation (18) can be reduced to 

e<Y>e=Xe=Oeee<X>e 
<Z>e=0 

+ e<xy>e-- OeEdX2>e=O 

e<Y2>e - DeEe<Xy>e + DA=0 
1 -  Ee<y'>e=0 
1-Ee(z2>e=0 

(19) 

Now, we will consider equation (19) in the following 
three cases. 

(i) e = 0: In this case, De and Ee are to be expressed as Do 
and 1 respectively, and the state is in equilibrium. The 
results are 

<X>o=<Z>o=O 

(Y)o = Z~ 

(y2)o= 1 

<g2>o=l 

(20) 

(Xy>o=;o 
Notice here that the segments are attracted in the y- 
direction by the adhesion from the anchored segments 
and balance with them, as shown by Figure 2a. 

(ii) 0<e<ec:  The values of D e and Ee stay near to Do 
and unity respectively. The state is stationary but not in 
equilibrium. The results obtained by DiMarzio and 
Rubin are as follows I 
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-e(y) 0 
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Do<Y>o 
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Figure 2 Schematic diagram of Oe. (a) The case of (i) (e=0): in equilibrium state, Expansion force of the chain is balanced by the 
adhesion force. (b) The case of (ii) (e<ec): Chain is balanced by sliding parallel to x-axis because of the shear force, but the height of 
the chain does not change. (c) The case of (iii) (e>ec): Expansion force becomes much stronger than for cases (i) and (ii). If the 
adhesion force is strong enough to support the adsorption of the chain, the height of the chain becomes abruptly small 

e(Y)e=Do(x)e 

2 e 
(X ) e - - ~ -  (Xy)e--  1=0  

la o 

and hence 

e 
(xy)e-:~e--~o (y2)e=O (21) 

(y2)e=  1 

(ze)e=l 

e 2 e:$e (22) 
(x2)~= 1 +~0- t  Do 

As can be seen above, the distribution along the y-axis is 
not disturbed by v. Hence the balance of forces in the y- 
direction is the same as the case (i). This case corresponds 
to Figure 2b. 

(iii) e >  e¢: Polymers begin to stretch non-linearly, i.e. 
Ee> 1. The diffusion coefficient De will then start to 
deviate from D 0. It decreases with increasing e as 
proposed by de Gennes 5. In order to maintain the 
stationary state, the following relations have to be 
satisfied: 

e(y)e= DeEe(x)e 

D e + e ( x y ) e -  DeEe(x2)e=O 

e( y2 )e -- DeEe(Xy)e - De:~e = 0 (23) 

1--Ee(y2)e=O 
1--Ee(~2)e=O 

and hence 
(y2)e = llEe (24) 

The distribution along the y-axis is depressed to 1 /x /~ ,  
and a new balance of forces is required in order to 
maintain this distribution. This means that the adhesion 
force in the y-direction must increase ~ times more 

than that in the weak field case. This case is shown 
schematically in Figure 2c. 

Consequently, when the adhesion force is strong 
enough to maintain this new balance of forces, the 
conformational distribution of segments changes 
smoothly to the new state, but, when the adhesion force is 
not sufficiently strong, the distribution changes abruptly. 

DISCUSSION 

Earlier we found that, in the external shear field of the 
solvent flow, the effective thickness of the adsorbed 
polymers can be given approximately by the effective 
width Yo and that the mean density, v, of the segments does 
not depend on the strength of the shear field directly. In the 
previous section an analysis of the effect of the shear field 
on the conformational distribution was made. It was 
found that (y2) ,  corresponding to the square of the 
effective width Yo, does not change for e values smaller 
than ec, but that it does contract to Yo/x/~ (Ee > 1) when e 
is greater than ec. This contraction of the distribution is 
caused by the stretching due to the strong shear field and 
can be maintained by an increase in the adhesion from the 
segments attached to the surface. 

In order to understand the features of our problem 
qualitatively we will now make some rough deductions. 
Although we need to analyse the detailed behaviour of the 
effective thickness, we will ignore the effects caused by the 
decrease in De. We may then consider the following three 
cases; (a) Only one end of the polymer chain is tightly 
bound to the surface and there are no trains. (b) The 
polymer has trains tightly anchored to the surface. (c) 
There are two kinds of trains: one is tightly anchored to 
the surface (including the tightly attached end) and the 
other is 'floating' near the surface. The last case could 
often occur because of the roughness of the surface. 

For cases (a) and (b), the effective thickness, ,~, will 
contract suddenly to ,,~(1/x/~)~. o when e becomes 
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greater than e c, because y thins down even though yo n 
remains unchanged. On the contrary, in the case (c), we 
can predict abrupt increases in the effective thickness. If 
some loops and/or  tails are anchored by the floating 
trains (whose adhesive forces might be weak), then the 
trains, which are stable when e is smaller than e¢, begin to 
leave the surface when e becomes greater than e~. The non- 
linear restoring forces then overcome the normal 
adhesion to the surface. This leads to stretching of the 
loops and/or  trains and some of them start to become 
untied. This, of course, results in an increase in the 
effective thickness because of the elongation of the arms of 
loops and/or  tails. Such a situation may occur abruptly 
when e exceeds e¢, and it may be thought that the 
experiment by Gremain and Myard 2 corresponds to this 
case. 

As was stated by Oono et al. 7, if the cross-over  region 
from the linear stretching to non-linear s tre tching by an 
external force is broad, then e¢ will be small and thus the 
abrupt change will occur at an early stage. 
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